Application of multi-source minimum variance beamformers for reconstruction of correlated neural activity
نویسندگان
چکیده
Linearly constrained minimum variance beamformers are highly effective for analysis of weakly correlated brain activity, but their performance degrades when correlations become significant. Multiple constrained minimum variance (MCMV) beamformers are insensitive to source correlations but require a priori information about the source locations. Besides the question whether unbiased estimates of source positions and orientations can be obtained remained unanswered. In this work, we derive MCMV-based source localizers that can be applied to both induced and evoked brain activity. They may be regarded as a generalization of scalar minimum-variance beamformers for the case of multiple correlated sources. We show that for arbitrary noise covariance these beamformers provide simultaneous unbiased estimates of multiple source positions and orientations and remain bounded at singular points. We also propose an iterative search algorithm that makes it possible to find sources approximately without a priori assumptions about their locations and orientations. Simulations and analyses of real MEG data demonstrate that presented approach is superior to traditional single-source beamformers in situations where correlations between the sources are significant.
منابع مشابه
Comparison of beamformers for EEG source signal reconstruction
Recently, several new beamformers have been introduced for reconstruction and localization of neural sources from EEG and MEG. Although studies have compared the accuracy of beamformers for localization of strong sources in the brain, a comparison of new and conventional beamformers for time-course reconstruction of a desired source has not been previously undertaken. In this study, 8 beamforme...
متن کاملSource-space ICA for MEG source imaging.
OBJECTIVE One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and loc...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملSource Activity Correlation Effects on LCMV Beamformers in a Realistic Measurement Environment
In EEG and MEG studies on brain functional connectivity and source interactions can be performed at sensor or source level. Beamformers are well-established source-localization tools for MEG/EEG signals, being employed in source connectivity studies both in time and frequency domain. However, it has been demonstrated that beamformers suffer from a localization bias due to correlation between so...
متن کاملLinearly Constrained Minimum Variance Beamforming with Quadratic Pattern Constraints for Spatially Spread Sources
Antenna arrays that receive emissions from spatially spread sources require beamformers with wider beamwidths than point source beamformers. The framework of linearly constrained minimum variance beamforming with quadratic pattern constraints (LCMV-QPC) is used to develop beamformers with a specified main beamwidth and sidelobe levels. The problem is formulated by imposing a set of inequality c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 58 2 شماره
صفحات -
تاریخ انتشار 2011